在过去的几年中,神经网络(NN)从实验室环境中发展为许多现实世界中的最新问题。结果表明,NN模型(即它们的重量和偏见)在训练过程中的重量空间中的独特轨迹上演变。随后,这种神经网络模型(称为模型动物园)的人群将在体重空间中形成结构。我们认为,这些结构的几何形状,曲率和平滑度包含有关训练状态的信息,并且可以揭示单个模型的潜在特性。使用这种模型动物园,可以研究(i)模型分析的新方法,(ii)发现未知的学习动力学,(iii)学习此类人群的丰富表示形式,或(iv)利用模型动物园来用于NN权重和NN权重的生成模型偏见。不幸的是,缺乏标准化模型动物园和可用的基准可以显着增加摩擦,以进一步研究NNS人群。通过这项工作,我们发布了一个新颖的模型动物园数据集,其中包含系统生成和多样化的NN模型种群,以进行进一步研究。总共提出的模型动物园数据集基于八个图像数据集,由27个模型动物园组成,该模型动物园训练有不同的超参数组合,包括50'360唯一的NN型号以及其稀疏双胞胎,导致超过3'844'360收集的型号。 。此外,对于模型动物园数据,我们提供了对动物园的深入分析,并为多个下游任务提供了基准。该数据集可在www.modelzoos.cc上找到。
translated by 谷歌翻译
给定模型动物园的神经网络权重的学习表示是一个新兴而具有挑战性的领域,从模型检查到神经体系结构搜索或知识蒸馏,具有许多潜在的应用。最近,在模型动物园进行训练的自动编码器能够学习一个超代理,该代表体捕获了动物园中模型的内在和外在特性。在这项工作中,我们扩展了超代表,以供生成使用以采样新的模型权重。我们提出的是层损失归一化,我们证明,这是基于超代表拓扑生成高性能模型和几种采样方法的关键。使用我们的方法生成的模型是多种多样的,性能的,并且能够超过强大的基准,从而在下游任务上进行了评估:初始化,合奏采样和传递学习。我们的结果表明,通过超代理通过过度代理,知识聚集从模型动物园到新模型的潜力,从而为新的研究方向铺平了途径。
translated by 谷歌翻译
检测会计异常是财务报表审核中的反复挑战。最近,已经提出了源自深度学习(DL)的新方法来审核声明的基本会计记录的大量。但是,由于它们的大量参数,这种模型表现出固有不透明的缺点。同时,隐藏模型的内部运作通常会阻碍其现实世界的应用。该观察结果在财务审计中尤其如此,因为审计师必须合理地解释和证明其审计决定是合理的。如今,已经提出了各种可解释的AI(XAI)技术来应对这一挑战,例如Shapley添加说明(Shap)。但是,在经常在财务审核中应用的无监督DL中,这些方法在编码变量级别上解释了模型输出。结果,人类审计师通常很难理解自动编码器神经网络(AENNS)的解释。为了减轻此缺点,我们提出(重塑),该属性在汇总属性级别上解释了模型输出。此外,我们引入了一个评估框架,以比较XAI方法在审计中的多功能性。我们的实验结果表明,经验证据表明,与最先进的基线相比,重塑结果是多功能解释的。我们将这种属性级别的解释视为在财务审计中采用无监督的DL技术的必要下一步。
translated by 谷歌翻译
正在进行的“数字化转型”从根本上改变了审计证据的性质,记录和数量。如今,国际审计标准(ISA)要求审计师检查财务报表的大量基础数字会计记录。结果,审计公司还“数字化”了他们的分析能力并投资深度学习(DL),这是机器学习的成功子学科。 DL的应用提供了从多个客户(例如在同一行业或管辖权中运营的组织)学习专业审计模型的能力。通常,法规要求审核员遵守严格的数据机密性措施。同时,最近有趣的发现表明,大规模的DL模型容易受到泄漏敏感培训数据信息的影响。如今,尚不清楚审计公司在遵守数据保护法规的同时如何应用DL模型。在这项工作中,我们提出了一个联合学习框架,以培训DL模型,以审核多个客户的相关会计数据。该框架涵盖了差异隐私和拆分学习能力,以减轻模型推断中的数据机密性风险。我们评估了在三个现实世界中付款数据集中检测会计异常的方法。我们的结果提供了经验证据,表明审计师可以从DL模型中受益,这些模型从专有客户数据的多个来源积累知识。
translated by 谷歌翻译
给定模型动物园的神经网络权重的学习表示是一个新兴而具有挑战性的领域,从模型检查到神经体系结构搜索或知识蒸馏,具有许多潜在的应用。最近,在模型动物园进行训练的自动编码器能够学习一个超代理,该代表体捕获了动物园中模型的内在和外在特性。在这项工作中,我们扩展了超代表性的生成用途,以品尝新的模型权重作为预训练。我们提出的是层损失归一化,我们证明,这是生成高性能模型和基于超代表经验密度的采样方法的关键。使用我们的方法生成的模型是多种多样的,性能的,并且能够超过传统基线的转移学习。我们的结果表明,通过超代理通过过度代理,知识聚集从模型动物园到新模型的潜力,从而为新的研究方向铺平了途径。
translated by 谷歌翻译
国际审计标准要求直接评估财务报表的潜在会计期刊条目。由人工智能的进步驱动,深度学习启发的审计技术出现了审查大量日记帐分类数据。但是,在定期审计中,大多数提出的方法都适用于从相对的静止期刊入学人群中学到,例如财政季度或年份。忽略审计相关分布变更在培训数据中不明显的情况或随时间逐步可用。相比之下,在持续审计中,深度学习模型在录制的日记条目流中持续培训,例如,最后一小时。导致以前知识干扰新信息的情况,并将完全覆盖。这项工作提出了一个持续的异常检测框架,以克服这两个挑战,旨在从日记帐数据经验流中学习。框架是基于故意设计的审计场景和两个现实世界数据集的评估。我们的实验结果提供了初步证据,即这种学习方案提供了减少假冒警报和假阴性决策的能力。
translated by 谷歌翻译
深度学习模型在众多图像识别,分类和重建任务中表现出令人难以置信的性能。虽然由于其预测能力而非常吸引人和有价值,但一个共同的威胁仍然挑战。一个专门训练的攻击者可以引入恶意输入扰动来欺骗网络,从而导致可能有害的错误预测。此外,当对手完全访问目标模型(白盒)时,这些攻击可以成功,即使这种访问受限(黑盒设置)。模型的集合可以防止这种攻击,但在其成员(攻击转移性)中的共享漏洞下可能是脆弱的。为此,这项工作提出了一种新的多样性促进深度集成的学习方法。该想法是促进巩固地图多样性(SMD)在集合成员上,以防止攻击者通过在我们的学习目标中引入额外的术语来实现所有集合成员。在培训期间,这有助于我们最大限度地减少模型炼塞之间的对齐,以减少共享成员漏洞,从而增加对对手的合并稳健性。我们经验展示了与中型和高强度白盒攻击相比,集合成员与改进性能之间的可转换性降低。此外,我们证明我们的方法与现有方法相结合,优于白色盒子和黑匣子攻击下的防御最先进的集合算法。
translated by 谷歌翻译
已显示自我监督学习(SSL)学习有用和信息保存的表示。神经网络(NNS)被广泛应用,但它们的重量空间仍然不完全理解。因此,我们建议使用SSL来学习NNS群体重量的神经表示。为此,我们介绍域特定的数据增强和适应的关注架构。我们的实证评估表明,该领域的自我监督的代表学习能够恢复不同的NN模型特征。此外,我们表明所提出的学习表示始终是预测超参数,测试准确性和泛化差距以及转移到分发外设置的工作。
translated by 谷歌翻译
In this paper, we address the challenge of land use and land cover classification using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible provided in the Earth observation program Copernicus. We present a novel dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting out of 10 classes with in total 27,000 labeled and geo-referenced images. We provide benchmarks for this novel dataset with its spectral bands using state-of-the-art deep Convolutional Neural Network (CNNs). With the proposed novel dataset, we achieved an overall classification accuracy of 98.57%. The resulting classification system opens a gate towards a number of Earth observation applications. We demonstrate how this classification system can be used for detecting land use and land cover changes and how it can assist in improving geographical maps. The geo-referenced dataset EuroSAT is made publicly available at https://github.com/phelber/eurosat.
translated by 谷歌翻译
The photograph and our understanding of photography is ever changing and has transitioned from a world of unprocessed rolls of C-41 sitting in a fridge 50 years ago to sharing photos on the 1.5" screen of a point and shoot camera 10 years back. And today the photograph is again something different. The way we take photos is fundamentally different. We can view, share, and interact with photos on the device they were taken on. We can edit, tag, or "filter" photos directly on the camera at the same time the photo is being taken. Photos can be automatically pushed to various online sharing services, and the distinction between photos and videos has lessened. Beyond this, and more importantly, there are now lots of them. To Facebook alone more than 250 billion photos have been uploaded and on average it receives over 350 million new photos every day [6], while YouTube reports that 300 hours of video are uploaded every minute [22]. A back of the envelope estimation reports 10% of all photos in the world were taken in the last 12 months, and that was calculated already more than three years ago [8].Today, a large number of the digital media objects that are shared have been uploaded to services like Flickr or Instagram, which along with their metadata and their social ecosystem form a vibrant environment for finding solutions to many research questions at scale. Photos and videos provide a wealth of information about the universe, covering entertainment, travel, personal records, and various other aspects of life in general as it was when they were taken. Considered collectively, they represent knowledge that goes * This work was done while Benjamin Elizalde was at ICSI.† This work was done while Karl Ni was at LLNL. ‡ This work was done while Damian Borth was at ICSI. § This work was done while Li-Jia Li was at Yahoo Labs.
translated by 谷歌翻译